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Duplicates on the Web
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Figure: The Beatles article and duplicates on Wikipedia—identical except redirect



Redundancy in Learning to Rank
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Figure: Training a learning to rank model
Problems

> identical relevance labels (Cranfield paradigm)
> similar features

» double impact on loss functions — overfitting



Duplicates in Web Corpora

» compare fingerprints/hashes of documents, e.g., word n-grams

> syntactic equivalence
» near-duplicate pairs form groups

» 20 % duplicates in web crawls, stable in time [Bro+97; FMN03]
» up to 17 % duplicates in TREC test collections [BZ05; Fro+20]
» few domains make up for most near duplicates
» redundant domains often popular
» canonical links to select representative [OK12],
e.g., Beatles — The Beatles

» if no link assert self-link, then choose most often linked
» resembles authors’ intent



Learning to Rank

» machine learning + search result ranking

» combine predefined features [Liu11, p. 5],
e.g., retrieval scores, BM25, URL length, click logs, ...

» standard approach for ranking: rerank top-k results
from conventional ranking function

» prone to imbalanced training data

Approaches

pointwise predict ground truth label for single documents
pairwise minimize inconsistencies in pairwise preferences

listwise optimize loss function ranked lists



Learning to Rank Pipeline
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Deduplication of Feature Vectors

» reuse methods for counteracting overfitting — undersampling

P active impact on learning

» deduplicate train/test sets separately

Full redundancy (100 %) : )
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No redundancy (0 %)

» use all documents for training

» remove non-canonical documents b
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Novelty Principle [5z0s]

» deduplication of search engine results

» users don’t want to see the same document twice

Duplicates unmodifed

overestimates
performance [BZ05]

users still see duplicates

no redundant content
— most realistic




Learning to Rank Datasets

Table: Benchmark datasets

Year Name Duplicate Queries Docs./
detection Query
2008 LETOR 3.0 [Qin+10] X 681 800
2009 LETOR 4.0 [QL13] v 2.5K 20
2011 Yahoo! LTR Challenge [CC11] X 36K 20
2016 MS MARCO [Ngu+16] v 100K 10
2020 our dataset v 200 350

» duplicate detection only possible for LETOR 4.0 and MS MARCO

» shallow judgements in existing datasets

> create new deeply judged dataset from TREC Web’09-"12

> worst-/average-case train/test splits for evaluation



Evaluation

» train & rerank common learning-to-rank models:
regression, RankBoost [Fre+03], LambdaMART [Wu+10],

AdaRank [XL07], Coordinate Ascent [MC07], ListNET [Cao+07]
> settings: no hyperparameter tuning, no regularization, 5 runs
> remove BM25 = 0 (selection bias in LETOR [MR08])
> BM25@body baseline for comparison

Experiments

> retrieval performance / nDCG@20 [JK02]
» ranking bias / rank of irrelevant duplicates

> fairness of exposure [Bie+20]



Retrieval Performance on ClueWeb09

Evaluation with Deep Judgements

0.26
— 0.25 0.25 0.24 0.25
1 0.23 ] 023 —— [
2
02| 02
o
Q 0.16
® 0.14 — 0.14
S
2 0.11
S 01
0
Dup. unmodified Dup. irrelevant Dup. removed

O0100% 000% JONOV ~ BM25 baseline

Figure: nDCG@20 performance for ClueWeb09, with Coordinate Ascent



Retrieval Performance on GOV?2

Evaluation with Shallow Judgements
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Figure: nDCG@20 performance for GOV2, with AdaRank




Retrieval Performance

Evaluation

» performance decreases by up to 39 % under novelty principle

» improvement with penalization of duplicates,
compensates novelty principle impact

> significant changes only for some algorithms,
mostly when duplicates irrelevant

» slightly decreased performance when deduplicating
without novelty principle

> all learning to rank models better than BM25 baseline



Ranking Bias on ClueWeb09

Evaluation with Deep Judgements
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Figure: First irrelevant duplicate rank for ClueWeb09, with Coordinate Ascent



Ranking Bias on GOV2

Evaluation with Shallow Judgements
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Figure: First irrelevant duplicate rank for GOV2, with AdaRank



Ranking Bias

Evaluation

v
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irrelevant duplicates ranked higher under novelty principle,
often top-10

bias towards duplicate content

removing/penalizing duplicates counteracts bias significantly
more biased than BM25 baseline

implicit popularity bias as redundant domains are most popular

poses risk at search engines using learning to rank



Fairness of Exposure

Evaluation

Figure: Fairness of exposure for ClueWeb09 and GOV2

no significant effects

fairness measures unaware of duplicates

>

>

» duplicates should count for exposure, not for relevance

» tune Biega’s parameters — trade-off fairness vs. relevance [Bie+20]
| 2

experiment with other fairness measures



Conclusion

» near-duplicates present in learning-to-rank datasets

» reduce retrieval performance
» induce bias
» don’t affect fairness of exposure

» novelty principle for measuring impact

» deduplication to prevent

Future Work
> direct optimization [Xu+08] of novelty-aware metrics [Cla+08]
» reflect redundancy in fairness of exposure

P experiments on more datasets (e.g., Common Crawl)
and more algorithms (e.g., deep learning)

» detect & remove vulnerable features

Thank you!
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Wikipedia Bias on ClueWeb09

Evaluation with Deep Judgements
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Figure: First irrelevant Wikipedia rank for ClueWeb09, with Coordinate Ascent



Fairness of Exposure on ClueWeb09
Evaluation with Deep Judgements
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Figure: Fairness of exposure for ClueWeb09, with Coordinate Ascent



Fairness of Exposure on GOV?2
Evaluation with Shallow Judgements
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Figure: Fairness of exposure for GOV2, with AdaRank
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